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Overview

• The JPL Two-Phase Technology Group has developed a novel 
mechanically pumped two-phase fluid loop for thermal control

• Architecture is based on a modified Capillary Pumped Loop (CPL)

• A fully operational testbed using the target flight fluid (ammonia) 
has been built and tested
• Test results demonstrate that the system is feasible
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System Architecture

• Architecture is based on a Capillary Pumped Loop (CPL)
• Additions to CPL include: 

1. A mechanical pump, 
2. A bypass line
3. An additively manufactured planar evaporator
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Typical CPL Architecture CPL with Mechanical Pump
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System Operation I

• Assume steady operation with meniscus established in evaporator
• Liquid and vapor are separated at meniscus (P3 > P2)
• Flow is single-phase everywhere except in condenser

• The pump does not push liquid through evaporator wick
• Meniscus behaves like a hydrodynamic wall since at meniscus: Pvapor > Pliquid

• The pump only pushes liquid through the bypass line
• This allows the pressure at the condenser outlet (P4) to be dictated by the 

pump flowrate and pressure drop in the bypass line
4

What does the pump do?
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System Operation II

• Consider a pressure balance between point 1 and 4
Δ𝑃!,# = Δ𝑃!,$ + Δ𝑃%,# − Δ𝑃%,$

• Solve for capillary pressure: ΔP3,2
Δ𝑃!,# = Δ𝑃$,# + Δ𝑃!,% − Δ𝑃$,%

Ø Capillary pumping is assisted by pressure drop in bypass line
Ø The mechanical pump covers the pressure drop in the bypass line
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How does the pump help?

dP across
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System Operation III

Ø Addition of the mechanical pump can significantly increase 
pumping capacity 
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CPL vs. Pump-Assisted CPL
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Advantages of Pump-Assisted CPL Achitecture

• Adds additional capability to the classic CPL architecture
• Can accommodate larger pressure drops due to pump

• Higher heat loads are possible
• Longer transport lengths possible

• Simplifies integration and testing
• Can incorporate mechanical fittings/valves
• Less sensitive to adverse orientations during ground testing

• More robust operation
• Mechanical pump gives additional control authority
• Could operate as a passive CPL with degraded performance if pump fails
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Testing Overview
• A pump-assisted CPL has been built and is currently under test

• Developed over past 3 years

• Currently working with an operationally flight-like system
• Working fluid: Ammonia (target flight-fluid)
• Incorporates all major system components in actual configuration
• Instrumented to monitor temperature, pressure, flowrate

• System has demonstrated stable, repeatable performance
• System is operating as anticipated
• Over 350 hours of testing completed

• Recent test campaign showed promising results
• Stable transport of heat loads from 30 W to 850 W
• Heat fluxes sustained up to 13 W/cm2

• Maintained isothermal planar evaporator (± 2°C) between 30 W and 300 W 
for a fixed pump speed 8
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Ammonia Testbed
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System Schematic
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Ammonia Testbed
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Hardware
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Ammonia Testbed
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Experimental Data I

Notes
• Total flowrate fixed @ 90 g/min
• Heat load varied from 50 W to 300 W
• Temperature @ evaporator outlet 

steady at ~27°C
• As heat load increases, evaporator 

flowrate increases
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Ammonia Testbed
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Experimental Data II

Notes
• As the heat load increases, the flowrate through the evaporator increases

• This implies that 
a) The evaporator wick is working as a capillary pump
b) The fluid phases are separated with pure vapor only existing between 

evaporator and condenser

• The system is working as anticipated
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Ammonia Testbed
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Evaporator IR Images

150 W 
(100 W top; 50 W bottom)

100 W30 W

325 W 
(150 W top; 175 W bottom)

Pump Flowrate: 90 g/min
Accumulator Temperature: 26°C
Evaporator Temperature: 28°C
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Ammonia Testbed
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Evaporator Design
Fabrication: DMLS
Material: Aluminum
Size: 8.4” x 7.8” x 0.63”
MAWP: 200 psig
Max Pore Size: 22 µm
Permeability: 1e-13 m2

Porosity: 24%

Wick Case Structural Pillars
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Conclusion

• A new architecture for a pump-assisted CPL has been developed
• A prototype ammonia testbed has been built and tested

• System incorporates a novel AM planar evaporator

• Preliminary test results indicate that the system is feasible
• System operated as expected
• Transported heat loads from 30 W to 850 W
• Max heat flux: 13 W/cm2

• Subcooling demonstrated from 3°C – 10°C
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Future Work

• Refine evaporator design
• Reduce thickness and increase effectiveness

• Increase TRL of system
• Integrate flight-like components into testbed
• Continue to experimentally characterize system
• Develop analytical/numerical design and prediction capability
• Purse flight-demo opportunities
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